Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy

نویسندگان

  • Chulhwan Hwang
  • Ja Mee Kim
  • JungHoon Kim
چکیده

The purpose of this study was to analyse the effects of the type, concentration, and nanoparticle diameter of dose enhancement materials on the dose enhancement of low- and high-energy megavoltage (MV) X-rays acquired from a medical linear accelerator using Monte Carlo simulation. Monte Carlo simulation was performed with the Monte Carlo N-Particle Transport (MCNPX) code, using the energy spectrum of the linear accelerator and a mathematical Snyder head phantom. A 5-cm-diameter virtual tumour was defined in the centre of the phantom. Gold, gadolinium, iodine and iron oxide were used as dose enhancement materials. Varying concentrations (7, 18 and 30 mg/g) of nanoparticles of different diameters (25, 50, 75, 100 and 125 nm) were applied, and the dose enhancement was comparatively evaluated for 4, 6, 10 and 15 MV X-rays, and a 60Co source. Higher dose enhancement factors (DEFs) were observed when the incident energy was low. Moreover, the dose enhancement effects were greatest with gold nanoparticles, followed by gadolinium, iodine, and iron oxide nanoparticles; the DEFs were 1.011-1.047 (gold), 1.005-1.030 (gadolinium), 1.002-1.028 (iodine) and 1.002-1.014 (iron oxide). The dose enhancement effects increased with increasing nanoparticle diameter and concentration. However, the concentration of the material had a greater impact than the diameter of the nanoparticles. As the concentration and diameter of nanoparticles increased, the DEF also increased. The 4 and 6 MV X-rays demonstrated higher dose enhancement compared with the 10 and 15 MV X-rays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Gold Nanoparticle Size Effect on Dose Enhancement Factor in Megavoltage Beam Radiotherapy Using MAGICA Polymer Gel Dosimeter

Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was use...

متن کامل

Studying Effects of Gold Nanoparticle on Dose Enhancement in Megavoltage Radiation

Background: Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers.Objective: The aim of this study is to understand characteristics of secondary electrons generated from interaction of gold nanoparticles GNPs with x-rays as a function of nanoparticle size and beam energy and ...

متن کامل

10B Concentration, Phantom Size and Tumor Location Dependent Dose Enhancement and Neutron Spectra in Boron Neutron Capture Therapy

Background: The amount of average dose enhancement in tumor loaded with 10B may vary due to various factors in boron neutron capture therapy.Objective: This study aims to evaluate dose enhancement in tumor loaded with 10B under influence of various factors and investigate the dependence of this dose enhancement on neutron spectra changes.Material and Methods: In this simulation stud...

متن کامل

Influence of Compensator Thickness and Field Size on Buildup factor of a Brass Compensator for Intensity- Modulated Radiation Therapy

Introduction: Radiotherapy is one of the effective methods in the treatment of cancer. In the recent methods of radiotherapy, intensity modulated radiotherapy (IMRT) technique by compensators is used. when photon beam passes the compensator, scattered photons can be generated within the compensator. The presence of scattered photons may complicate the design of compensators as...

متن کامل

Energy Optimization And Calculation Of Dose Absorption Enhancement Factor In Photon Activation Therapy

Introduction: Secondary radiation such as photoelectrons, Auger electrons and characteristic radiations cause a local boost in dose for a tumor when irradiated with an external X-ray beam after being loaded with elements capable of activating the tumor, e.g.; I and Gd. Materials and Methods:  In this investigation, the MCNPX code was used for simulation and calculation of dose enhancement facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2017